Page 1

3GPP TSG_CN5 (Open Service Access – OSA)
N5-010568
Meeting #12, Sophia Antipolis, FRANCE, 16 – 19 July 2001
	CR-Form-v4

	CHANGE REQUEST

	

	(

	TS 29.198-8
	CR
	CRNum
	(

rev
	-
	(

Current version:
	4.1.0
	(

	

	For HELP on using this form, see bottom of this page or look at the pop-up text over the (
 symbols.

	

	Proposed change affects:
(

	(U)SIM
	
	ME/UE
	
	Radio Access Network
	
	Core Network
	X

	

	Title:
(

	Replacing Out Parameters with Return Types in OSA R4

	
	

	Source:
(

	Ultan Mulligan, ETSI PTCC

	
	

	Work item code:
(

	OSA1
	
	Date: (

	5 July 2001

	
	
	
	
	

	Category:
(

	F
	
	Release: (

	REL-4

	
	Use one of the following categories:
F (correction)
A (corresponds to a correction in an earlier release)
B (addition of feature),
C (functional modification of feature)
D (editorial modification)

Detailed explanations of the above categories can
be found in 3GPP TR 21.900.
	Use one of the following releases:
2
(GSM Phase 2)
R96
(Release 1996)
R97
(Release 1997)
R98
(Release 1998)
R99
(Release 1999)
REL-4
(Release 4)
REL-5
(Release 5)

	
	

	Reason for change:
(

	At CN5 and CN it was agreed that Out-parameters should be removed from methods as a means of returning information, to be replaced by Return Types, in line with commonly used programming practice

	
	

	Summary of change:
(

	For each method, replace the return parameter TpResult with:
’void’ if the method has no out-parameter;
or the type of the out-parameter if the method has an out-parameter, and delete the out-parameter from the method.

	
	

	Consequences if
(

not approved:
	If this particular CR is not agreed, TS 29.198-8 is out of sync. with the other parts of TS 29.198.

If the related batch of CRs is not agreed, OSA will have a limited acceptance among the application development community, since it will be more difficult to implement. This presents a risk to the return on investment in development of OSA.

	
	

	Clauses affected:
(

	7, 8, Annex B

	
	

	Other specs
(

	X
	 Other core specifications
(

	All other parts of TS 29.198 Rel-4

	affected:
	
	 Test specifications
	

	
	
	 O&M Specifications
	

	
	

	Other comments:
(

	

How to create CRs using this form:

Comprehensive information and tips about how to create CRs can be found at: http://www.3gpp.org/3G_Specs/CRs.htm. Below is a brief summary:

1)
Fill out the above form. The symbols above marked (
 contain pop-up help information about the field that they are closest to.

2)
Obtain the latest version for the release of the specification to which the change is proposed. Use the MS Word "revision marks" feature (also known as "track changes") when making the changes. All 3GPP specifications can be downloaded from the 3GPP server under ftp://ftp.3gpp.org/specs/ For the latest version, look for the directory name with the latest date e.g. 2001-03 contains the specifications resulting from the March 2001 TSG meetings.

3)
With "track changes" disabled, paste the entire CR form (use CTRL-A to select it) into the specification just in front of the clause containing the first piece of changed text. Delete those parts of the specification which are not relevant to the change request.
7 The Service Interface Specifications

7.1 Interface Specification Format

This section defines the interfaces, methods and parameters that form a part of the API specification. The Unified Modelling Language (UML) is used to specify the interface classes. The general format of an interface specification is described below.

7.1.1 Interface Class

This shows a UML interface class description of the methods supported by that interface, and the relevant parameters and types. The Service and Framework interfaces for enterprise-based client applications are denoted by classes with name Ip<name>. The callback interfaces to the applications are denoted by classes with name IpApp<name>. For the interfaces between a Service and the Framework, the Service interfaces are typically denoted by classes with name IpSvc<name>, while the Framework interfaces are denoted by classes with name IpFw<name>

7.1.2 Method descriptions

Each method (API method "call") is described. All methods in the API return a value of type TpResult, indicating, amongst other things, if the method invocation was sucessfully executed or not.
Both synchronous and asynchronous methods are used in the API. Asynchronous methods are identified by a 'Req' suffix for a method request, and, if applicable, are served by asynchronous methods identified by either a 'Res' or 'Err' suffix for method results and errors, respectively. To handle responses and reports, the application or service developer must implement the relevant IpApp<name> or IpSvc<name> interfaces to provide the callback mechanism.

7.1.3 Parameter descriptions

Each method parameter and its possible values are described. Parameters described as 'in' represent those that must have a value when the method is called. Those described as 'out' are those that contain the return result of the method when the method returns.

7.1.4 State Model

If relevant, a state model is shown to illustrate the states of the objects that implement the described interface.

7.2 Base Interface

7.2.1 Interface Class IpInterface

All application, framework and service interfaces inherit from the following interface. This API Base Interface does not provide any additional methods.

	<<Interface>>

IpInterface

	

	

7.3 Service Interfaces

7.3.1 Overview

The Service Interfaces provide the interfaces into the capabilities of the underlying network - such as call control, user interaction, messaging, mobility and connectivity management.

The interfaces that are implemented by the services are denoted as "Service Interface". The corresponding interfaces that must be implemented by the application (e.g. for API callbacks) are denoted as "Application Interface".

7.4 Generic Service Interface

7.4.1 Interface Class IpService
Inherits from: IpInterface
All service interfaces inherit from the following interface.

	<<Interface>>

IpService

	

	setCallback (appInterface : in IpInterfaceRef) : void
setCallbackWithSessionID (appInterface : in IpInterfaceRef, sessionID : in TpSessionID) : void

Method

setCallback()

This method specifies the reference address of the callback interface that a service uses to invoke methods on the application. It is not allowed to invoke this method on an interface that uses SessionID's.

Parameters

appInterface : in IpInterfaceRef

Specifies a reference to the application interface, which is used for callbacks
Raises

TpCommonExceptions

Method

setCallbackWithSessionID()

This method specifies the reference address of the application's callback interface that a service uses for interactions associated with a specific session ID: e.g. a specific call, or call leg. It is not allowed to invoke this method on an interface that does not uses SessionID's.

Parameters

appInterface : in IpInterfaceRef

Specifies a reference to the application interface, which is used for callbacks
sessionID : in TpSessionID

Specifies the session for which the service can invoke the application's callback interface.
Raises

TpCommonExceptions, P_INVALID_SESSION_ID

8 Data Session Control Interface Classes

The Data Session Control provides a means to control per data session basis the establishment of a new data session. This means espcially in the GPRS context that the establishment of a PDP session is modelled not the attach/detach mode. Change of terminal location is assumed to be managed by the underlying network and is therefore not part of the model. The underlying assumption is that a terminal initiates a data session and the application can reject the request for data session establishment, can continue the establishment or can continue and change the destination as requested by the terminal.
The modelling is hold similar to the Generic Call Control but assuming a simpler underlying state model. An IpDataSessionManager and IpData Session object are the interfaces used by the application, whereas the IpAppDataSessionManager and the IpAppDataSession interfaces are implemented by the application.
8.1 Interface Class IpAppDataSession

Inherits from: IpInterface.
The application side of the data session interface is used to handle data session request responses and state reports.

	<<Interface>>

IpAppDataSession

	

	connectRes (dataSessionID : in TpSessionID, eventReport : in TpDataSessionReport, assignmentID : in TpAssignmentID) : void
connectErr (dataSessionID : in TpSessionID, errorIndication : in TpDataSessionError, assignmentID : in TpAssignmentID) : void
superviseDataSessionRes (dataSessionID : in TpSessionID, report : in TpDataSessionSuperviseReport, usedVolume : in TpDataSessionSuperviseVolume, qualityOfService : in TpDataSessionQosClass) : void
superviseDataSessionErr (dataSessionID : in TpSessionID, errorIndication : in TpDataSessionError) : void
dataSessionFaultDetected (dataSessionID : in TpSessionID, fault : in TpDataSessionFault) : void

Method

connectRes()

This asynchronous method indicates that the request to connect a data session with the destination party was successful, and indicates the response of the destination party (e.g. connected, disconnected).

Parameters

dataSessionID : in TpSessionID

Specifies the session ID of the data session.
eventReport : in TpDataSessionReport

Specifies the result of the request to connect the data session. It includes the network event, date and time, monitoring mode, negotiated quality of service and event specific information such as release cause.
assignmentID : in TpAssignmentID

Method

connectErr()

This asynchronous method indicates that the request to connect a data session with the destination party was unsuccessful, e.g. an error detected in the network or the data session was abandoned.

Parameters

dataSessionID : in TpSessionID

Specifies the session ID.
errorIndication : in TpDataSessionError

Specifies the error which led to the original request failing.
assignmentID : in TpAssignmentID

Method

superviseDataSessionRes()

This asynchronous method reports a data session supervision event to the application. In addition, it may also be used to notify the application of a newly negotiated set of Quality of Service parameters during the active life of the data session.

Parameters

dataSessionID : in TpSessionID

Specifies the data session.
report : in TpDataSessionSuperviseReport

Specifies the situation, which triggered the sending of the data session supervision response.
usedVolume : in TpDataSessionSuperviseVolume

 Specifies the used volume for the data session supervision (in the same unit as specified in the request).
qualityOfService : in TpDataSessionQosClass

Specifies the newly negotiated Quality of Service parameters for the data session.
Method

superviseDataSessionErr()

This asynchronous method reports a data session supervision error to the application.

Parameters

dataSessionID : in TpSessionID

 Specifies the data session ID.
errorIndication : in TpDataSessionError

Specifies the error which led to the original request failing.
Method

dataSessionFaultDetected()

This method indicates to the application that a fault in the network has been detected which can't be communicated by a network event, e.g., when the user aborts before any establishment method is called by the application.

The system purges the Data Session object. Therefore, the application has no further control of data session processing. No report will be forwarded to the application.

Parameters

dataSessionID : in TpSessionID

 Specifies the data session ID of the Data Session object in which the fault has been detected
fault : in TpDataSessionFault

 Specifies the fault that has been detected.
8.2 Interface Class IpAppDataSessionControlManager

Inherits from: IpInterface.
The data session control manager application interface provides the application data session control management functions to the data session control SCF.

	<<Interface>>

IpAppDataSessionControlManager

	

	dataSessionAborted (dataSession : in TpSessionID) : void
reportNotification (dataSessionReference : in TpDataSessionIdentifier, eventInfo : in TpDataSessionEventInfo, assignmentID : in TpAssignmentID) : IpAppDataSessionRef
dataSessionNotificationContinued () : void
dataSessionNotificationInterrupted () : void

Method

dataSessionAborted()

This method indicates to the application that the Data Session object has aborted or terminated abnormally. No further communication will be possible between the Data Session object and the application.

Parameters

dataSession : in TpSessionID

Specifies the session ID of the data session that has aborted or terminated abnormally.
Method

reportNotification()

This method notifies the application of the arrival of a data session-related event.

Returns appDataSession : Specifies a reference to the application object which implements the callback interface for the new data session.

Parameters

dataSessionReference : in TpDataSessionIdentifier

Specifies the session ID and the reference to the Data Session object to which the notification relates.
eventInfo : in TpDataSessionEventInfo

 Specifies data associated with this event. This data includes the destination address provided by the end-user and the quality of service requested or negotiated for the data session.
assignmentID : in TpAssignmentID

 Specifies the assignment id which was returned by the createNotification() method. The application can use assignment ID to associate events with event-specific criteria and to act accordingly.
Returns

IpAppDataSessionRef
Method

dataSessionNotificationContinued()

This method indicates to the application that all event notifications are resumed.

Parameters

No Parameters were identified for this method

Method

dataSessionNotificationInterrupted()

This method indicates to the application that event notifications will no longer be sent (for example, due to faults detected).

Parameters

No Parameters were identified for this method

8.3 Interface Class IpDataSession

Inherits from: IpService.
The Data Session interface provides basic methods for applications to control data sessions.

	<<Interface>>

IpDataSession

	

	connectReq (dataSessionID : in TpSessionID, responseRequested : in TpDataSessionReportRequestSet, targetAddress : in TpAddress) : TpAssignmentID
release (dataSessionID : in TpSessionID, cause : in TpDataSessionReleaseCause) : void
superviseDataSessionReq (dataSessionID : in TpSessionID, treatment : in TpDataSessionSuperviseTreatment, bytes : in TpDataSessionSuperviseVolume) : void
setDataSessionChargePlan (dataSessionID : in TpSessionID, dataSessionChargePlan : in TpDataSessionChargePlan) : void
setAdviceOfCharge (dataSessionID : in TpSessionID, aoCInfo : in TpAoCInfo, tariffSwitch : in TpDuration) : void

Method

connectReq()

This asynchronous method requests the connection of a data session with the destination party (specified in the parameter TargetAddress). The Data Session object is not automatically deleted if the destination party disconnects from the data session.

Returns assignmentID : Specifies the ID assigned to the request. The same ID will be returned in the connectRes or Err. This allows the application to correlate the request and the result.

Parameters

dataSessionID : in TpSessionID

Specifies the session ID.
responseRequested : in TpDataSessionReportRequestSet

Specifies the set of observed data session events that will result in a connectRes() being generated.
targetAddress : in TpAddress

Specifies the address of destination party.
Returns

TpAssignmentID
Raises

TpCommonExceptions, P_SERVICE_INFORMATION_MISSING, P_SERVICE_FAULT_ENCOUNTERED, P_INVALID_NETWORK_STATE, P_INVALID_ADDRESS, P_INVALID_SESSION_ID
Method

release()

This method requests the release of the data session and associated objects.

Parameters

dataSessionID : in TpSessionID

Specifies the session.
cause : in TpDataSessionReleaseCause

Specifies the cause of the release.
Raises

TpCommonExceptions, P_SERVICE_INFORMATION_MISSING, P_SERVICE_FAULT_ENCOUNTERED, P_INVALID_NETWORK_STATE, P_INVALID_SESSION_ID
Method

superviseDataSessionReq()

The application calls this method to supervise a data session. The application can set a granted data volume for this data session. If an application calls this function before it calls a connectReq() or a user interaction function the time measurement will start as soon as the data session is connected. The Data Session object will exist after the data session has been terminated if information is required to be sent to the application at the end of the data session

Parameters

dataSessionID : in TpSessionID

Specifies the data session.
treatment : in TpDataSessionSuperviseTreatment

Specifies how the network should react after the granted data volume has been sent.
bytes : in TpDataSessionSuperviseVolume

Specifies the granted number of bytes that can be transmitted for the data session.
Raises

TpCommonExceptions, P_SERVICE_INFORMATION_MISSING, P_SERVICE_FAULT_ENCOUNTERED, P_INVALID_NETWORK_STATE, P_INVALID_SESSION_ID
Method

setDataSessionChargePlan()

Allows an application to include charging information in network generated CDR.

Parameters

dataSessionID : in TpSessionID

Specifies the session ID of the data session.
dataSessionChargePlan : in TpDataSessionChargePlan

Specifies the charge plan used.
Raises

TpCommonExceptions, P_SERVICE_INFORMATION_MISSING, P_SERVICE_FAULT_ENCOUNTERED, P_INVALID_NETWORK_STATE, P_INVALID_SESSION_ID
Method

setAdviceOfCharge()

This method allows the application to determine the charging information that will be send to the end-users terminal.

Parameters

dataSessionID : in TpSessionID

Specifies the session ID of the data session.
aoCInfo : in TpAoCInfo

Specifies two sets of Advice of Charge parameter according to GSM.
tariffSwitch : in TpDuration

Specifies the tariff switch that signifies when the second set of AoC parameters becomes valid.
Raises

TpCommonExceptions, P_SERVICE_INFORMATION_MISSING, P_SERVICE_FAULT_ENCOUNTERED, P_INVALID_NETWORK_STATE, P_INVALID_TIME_AND_DATE_FORMAT
8.4 Interface Class IpDataSessionControlManager

Inherits from: IpService.
This interface is the SCF manager' interface for Data Session Control.

	<<Interface>>

IpDataSessionControlManager

	

	createNotification (appDataSessionControlManager : in IpAppDataSessionControlManagerRef, eventCriteria : in TpDataSessionEventCriteria) : TpAssignmentID
destroyNotification (assignmentID : in TpAssignmentID) : void
changeNotification (assignmentID : in TpAssignmentID, eventCriteria : in TpDataSessionEventCriteria) : void
getNotification () : TpDataSessionEventCriteria

Method

createNotification()

This method is used to enable data session notifications.

Returns assignmentID : Specifies the ID assigned by the Data Session Manager object for this newly-enabled event notification.

Parameters

appDataSessionControlManager : in IpAppDataSessionControlManagerRef

If this parameter is set (i.e. not NULL) it specifies a reference to the application interface which is used for callbacks. If set to NULL, the application interface defaults to the interface specified via the setCallback() method.
eventCriteria : in TpDataSessionEventCriteria

Specifies the event specific criteria used by the application to define the event required. Individual addresses or address ranges may be specified for destination and/or origination. Examples of events are "Data Session set up".
Returns

TpAssignmentID
Raises

TpCommonExceptions, P_SERVICE_INFORMATION_MISSING, P_SERVICE_FAULT_ENCOUNTERED, P_INVALID_NETWORK_STATE, P_INVALID_ADDRESS, P_INVALID_CRITERIA, P_INVALID_EVENT_TYPE
Method

destroyNotification()

This method is used by the application to disable data session notifications.

Parameters

assignmentID : in TpAssignmentID

Specifies the assignment ID given by the data session manager object when the previous createNotification() was done.
Raises

TpCommonExceptions, P_SERVICE_INFORMATION_MISSING, P_SERVICE_FAULT_ENCOUNTERED, P_INVALID_NETWORK_STATE, P_INVALID_ASSIGNMENT_ID
Method

changeNotification()

This method is used by the application to change the event criteria introduced with the createNotification method. Any stored notification request associated with the specified assignmentID will be replaced with the specified events requested.

Parameters

assignmentID : in TpAssignmentID

Specifies the ID assigned by the manager interface for the event notification.
eventCriteria : in TpDataSessionEventCriteria

Specifies the enw set of event criteria used by the application to define the event required. Only events that meet these criteria are reported.
Raises

TpCommonExceptions, P_SERVICE_INFORMATION_MISSING, P_SERVICE_FAULT_ENCOUNTERED, P_INVALID_NETWORK_STATE, P_INVALID_ASSIGNMENT_ID, P_INVALID_CRITERIA, P_INVALID_EVENT_TYPE
Method

getNotification()

This method is used by the application to query the event criteria set with createNotification or changeNotification.

Returns eventCriteria : Specifies the event criteria used by the application to define the event required. Only events that meet these requirements are reported.

Parameters

No Parameters were identified for this method

Returns

TpDataSessionEventCriteria
Raises

TpCommonExceptions, P_SERVICE_INFORMATION_MISSING, P_SERVICE_FAULT_ENCOUNTERED, P_INVALID_NETWORK_STATE
	

	

	

===============================Next changed section===================================

B.3
All Interfaces

All methods on IpApp interfaces no longer throw exceptions.

All methods on the other interfaces throw TpCommonExceptions and individual, identified exceptions

All methods now return void or the former out parameter.

�PAGE \# "'Page: '#'�'" �� Enter the specification number in this box. For example, 04.08 or 31.102. Do not prefix the number with anything . i.e. do not use "TS", "GSM" or "3GPP" etc.

�PAGE \# "'Page: '#'�'" �� Enter the CR number here. This number is allocated by the 3GPP support team.

�PAGE \# "'Page: '#'�'" �� Enter the revision number of the CR here. If it is the first version, use a "-".

�PAGE \# "'Page: '#'�'" �� Enter the version of the specification here. This number is the version of the specification to which the CR will be applied if it is approved. Make sure that the latest version of the specification (of the relevant release) is used when creating the CR. If unsure what the latest version is, go to � HYPERLINK "http://www.3gpp.org/3G_Specs/3G_Specs.htm" ��http://www.3gpp.org/3G_Specs/3G_Specs.htm�

�PAGE \# "'Page: '#'�'" �� For help on how to fill out a field, place the mouse pointer over the special symbol closest to the field in question.

�PAGE \# "'Page: '#'�'" �� Mark one or more of the boxes with an X.

�PAGE \# "'Page: '#'�'" �� Enter a concise description of the subject matter of the CR. It should be no longer than one line.

�PAGE \# "'Page: '#'�'" �� Enter the source of the CR. This is either (a) one or several companies or, (b) if a (sub)working group has already reviewed and agreed the CR, then list the group as the source.

�PAGE \# "'Page: '#'�'" �� Enter the acronym for the work item which is applicable to the change. This field is mandatory for category F, B & C CRs for release 4 and later. A list of work item acronyms can be found in the 3GPP work plan. See � HYPERLINK "http://www.3gpp.org/ftp/information/work_plan/" ��http://www.3gpp.org/ftp/information/work_plan/�

�PAGE \# "'Page: '#'�'" �� Enter the date on which the CR was last revised.

�PAGE \# "'Page: '#'�'" �� Enter a single letter corresponding to the most appropriate category listed below. For more detailed help on interpreting these categories, see the Technical Report 21.900 "3GPP working methods".

�PAGE \# "'Page: '#'�'" �� Enter a single release code from the list below.

�PAGE \# "'Page: '#'�'" �� Enter text which explains why the change is necessary.

�PAGE \# "'Page: '#'�'" �� Enter text which describes the most important components of the change. i.e. How the change is made.

�PAGE \# "'Page: '#'�'" �� Enter here the consequences if this CR was to be rejected. It is necessary to complete this section only if the CR is of category "F" (i.e. essential correction).

�PAGE \# "'Page: '#'�'" �� Enter each the number of each clause which contains changes.

�PAGE \# "'Page: '#'�'" �� Enter an X in the box if any other specifications are affected by this change.

�PAGE \# "'Page: '#'�'" �� List here the specifications which are affected or the CRs which are linked.

�PAGE \# "'Page: '#'�'" �� Enter any other information which may be needed by the group being requested to approve the CR. This could include special conditions for it's approval which are not listed anywhere else above.

�PAGE \# "'Page: '#'�'" �� This is an example of pop-up text.

CR page 2

